Email Us
Increasing Use of Preimplantation Genetic Testing Technology in Conjunction with IVF Treatment

Increasing Use of Preimplantation Genetic Testing Technology in Conjunction with IVF Treatment

Table of Content [Hide]

    More and more reproductive institutions are using Preimplantation Genetic Diagnosis (PGD) to greatly increase the chances of successful pregnancy for couples who have previously failed in vitro fertilization. It is estimated that more than half of failed IVF cases cannot be explained by obvious issues with embryo quality. However, this statistic can be misleading for many couples. Most IVF centers carefully observe the appearance of embryos under a microscope, as they try to identify the "good" or "high quality" embryos from the poorer quality ones. Typically, "good" embryos are labeled once they show the appropriate amount of cell division at a given point in their growth cycle.


    Preimplantation genetic testing provides doctors with an unprecedented ability to examine embryos beyond their surface appearance. We can now inspect the most important internal genetic code of the embryos. With these new genetic tools, we have learned that certain embryos which appear to be of the highest quality on the surface may carry genetic codes that make them less than optimal for establishing a healthy pregnancy.


    Preimplantation genetic testing improves success rates in a single IVF cycle


    By transferring two or three embryos that are known to have normal chromosomes, the chances of successful pregnancy in a single IVF cycle can increase significantly. When using embryos that are known to be genetically normal, the chances of a healthy pregnancy can double.


    Preimplantation genetic testing can greatly improve implantation rates (the chance of a single embryo resulting in pregnancy). Embryologists use preimplantation genetic testing analysis to determine whether the embryos have normal chromosomes before selecting which one to transfer to the mother. In embryos that are normal in their genetics, each of the 22 types of chromosomes should have two (and only two) chromosomes, with one set of XX female chromosomes or one set of XY male chromosomes. Any more or less than this will lead to a faulty embryo.


    Preimplantation genetic testing allows us to take an important step forward by identifying and isolating embryos that are chromosomally normal. With these critically important genetic pieces of information, we are in a good position to determine which embryos offer the best chances of a healthy pregnancy. By analyzing embryos with preimplantation genetic testing, we can offer significant improvements to IVF success rates for those who've had prior attempts.


    Accuracy of preimplantation genetic testing in failed IVF cases


    Preimplantation genetic testing has over 98% accuracy in detecting genetic abnormalities. Since Preimplantation genetic testing can improve success rates for IVF, many couples choose to reduce the total number of embryos placed in the uterus, which also reduces the chance of multiple births and premature delivery. Experience has shown that even with fewer embryos implanted, the pregnancy success rate is still increased after Preimplantation genetic testing.


    Preimplantation genetic testing identifies sperm or "both-sided" infertility issues


    Another very important issue learned from preimplantation genetic testing is that although sperm is rarely associated with IVF failure, in some cases it may cause repeated IVF failure. While many sperm deficiencies prevent fertilization of the embryo or halt development before the blastocyst stage, more subtle microdeletions and sperm chromatin fragmentation may explain why some IVF cycles fail despite having several preimplantation genetic testing normal embryos to choose from. With this new information, sperm chromatin fragment and microdeletion screening can be considered in certain IVF cycles to eliminate potential undetectable sperm defects.


    Sometimes, when it is discovered that a single sperm or sperm and egg together are causing infertility or repeated IVF failure, the notion of which partner is "at fault" will be upturned. Pre-implantation genetic testing and its wide application will deepen our understanding of human embryo development and provide more opportunities to help more couples.


    Preimplantation genetic testing provides a true scientific basis for selecting embryos for IVF and understanding how and why some couples experience repeated failures. When no chromosomally normal embryos are selected, the chances of success are slim and energy can be diverted into seeking other means of achieving pregnancy.


    Overall, any program that improves success rates will save time and money in the long run, and reduce the emotional cost of dealing with infertility. Non-integer screening with preimplantation genetic testing is neither simple nor cheap, but for many couples the benefits clearly outweigh the costs.




    Related CapitalBiotech Products

    CapitalBiotech News & Blog

    • What Is the Application of Bacterial Genome Sequencing?November 10, 2023Bacterial genome sequencing has become an essential part of modern biology and medicine. This advanced technology allows scientists to decipher the complete set of genes in a bacterial cell, revealing...view
    • Why Do You Need Chromosomal Microarray Analysis?April 4, 2023Chromosomes are genetic material and the carriers of genes. The human body has 23 pairs of chromosomes, with 22 pairs being common to both sexes and called autosomes. The other pair determines sex and...view
    • A Brief Analysis of Microfluidic TechnologyApril 16, 2025What is Microfluidic TechnologyMicrofluidic technology is a scientific technology characterized by the precise manipulation of fluids in micro-nano scale spaces. It has the ability to miniaturize the ...view
    • Genetic Testing for Obesity Decodes the Obesity: Precising Weight LossNovember 13, 2024Genetic Testing for Obesity: Revolutionary Weight Loss TechnologyRegarding obesity, here's a set of data for everyone:The World Obesity Federation's significant release: It predicts that by 20...view
    • Microbial Genome Sequencing's Impact on AgricultureFebruary 26, 2024Microbial genome sequencing has revolutionized the field of agriculture by providing valuable insights into the genetic makeup of microorganisms that play a crucial role in soil health, plant growth, ...view
    • What Are Microfluidic Platforms?November 10, 2023Microfluidic platforms are a powerful and innovative technology that is revolutionizing a wide range of industries. These platforms are designed to handle and process small amounts of fluids, often on...view
    Products
    86-10-69002900
    Building C, Block 88 Kechuang 6th Street, Yizhuang Biomedical Park, Beijing